SITE INVESTIGATION REPORT

200 ASH STREET BLOCK 1405, LOT 6 DELANCO TOWNSHIP BURLINGTON COUNTY, NEW JERSEY

Prepared for:

Township of Delanco 770 Coopertown Road Delanco, NJ 08075

Engineers • Planners • Scientists • Surveyors

815 East Gate Drive, Suite 103 Mount Laurel, New Jersey 08054 tel. (856) 235-7170 www.erinj.com

Prepared By:

Meredith Tulio

Reviewed By:

Marc H. Selove

Marc H. Selover, PG, LSRP

March 2020 39050-01

TABLE OF CONTENTS

TITL	<u>E</u>	PAGE
1.0	INTRODUCTION	1
2.0	PHYSICAL SETTING	2
2.1	SITE DESCRIPTION	2
2.2	SURFACE WATERS	2
2.3	Hydrogeologic Setting	2
2.4	LAND USE	2
2.5	UTILITIES	2
3.0	SITE INVESTIGATION	3
3.1	TECHNICAL OVERVIEW	3
3.2	AOC-1: FORMER OIL HOUSE	3
3.3	AOC-2: Former Powerhouse	4
3.4	AOC-3: LOADING DOCK	5
3.5	AOC-4: Former Dwelling/Office Building	6
3.6	AOC-5: HISTORIC FILL	6
4.0	CONCLUSIONS AND RECOMMENDATIONS	8
5.0	LIMITATIONS	9

FIGURES

Figure 1: USGS Location Map Figure 2: 2015 Aerial Photograph Figure 3: Site Investigation Map

TABLES

Table 1: Soil Analytical Results Table 2: Groundwater Analytical Results

APPENDICES

BORING LOGS	А
LABORATORY REPORT	В
ENVIROPROBE GEOPHYSICAL REPORT	С

1.0 INTRODUCTION

Environmental Resolutions, Inc. (ERI) has prepared this report to document the findings of a Site Investigation (SI) that has been conducted at 200 Ash Street, situated on Block 1405, Lot 6, in Delanco Township, Burlington County, New Jersey (the Site). The following areas of concern (AOCs) were identified during a Phase I Environmental Site Assessment/Preliminary Assessment (Phase I/PA) completed for the Site by ERI in January 2020:

- AOC-1: Former Oil House
- AOC-2: Former Powerhouse
- AOC-3: Loading Dock
- AOC-4: Former Dwelling/Office Building
- AOC-5: Historic Fill

It was recommended that a SI be completed for AOC-1 through AOC-5. The results of the investigation of these AOCs are included in this report. The investigation has been conducted in general accordance with the *Technical Requirements for Site Remediation*, N.J.A.C. 7:26E. Based on the findings of the Site Investigation, recommendations for additional actions are presented.

2.0 PHYSICAL SETTING

2.1 Site Description

The Site property is situated on Block 1405, Lot 6 in Delanco Township, Burlington County, NJ and comprises approximately 0.75 acres. The Site is located on the south side of Rancocas Ave, to the southwest of the intersection of Rancocas Ave and Ash St. The Site consists of a vacant, three-story brick warehouse building and surrounding lawn area. The Site location is depicted on **Figure 1: USGS Location Map** and **Figure 2: 2015 Aerial Photograph**.

2.2 Surface Waters

The Rancocas Creek borders the Site to the south. The Delaware River is located approximately 2,000 feet to the northwest.

2.3 Hydrogeologic Setting

The Site is located within a mapped outcrop of the Potomac Formation. The Potomac Formation comprises the base of the Potomac-Raritan-Magothy (PRM) aquifer, which is an important public water resource of the New Jersey Coastal Plain. In New Jersey, the Cretaceous-aged PRM is generally considered a single hydrogeologic unit or aquifer system (Fusillo, Voronin, 1980). There are several physically distinguishable units within the PRM aquifer system; however, individual formations may not be distinguishable over wide areas. Generally, lower, middle, and upper sand-and-gravel aquifers separated by clay-and-silt confining units have been recognized.

2.4 Land Use

The properties adjoining the Site are residential and commercial. Four dwellings are located adjacently to the west, followed by Buttonwood Street and additional dwellings. Rancocas Ave borders the Site to the north, followed by residences. Ash St. forms the eastern boundary of the Site, followed by dwellings and a commercial lot containing several structures. The Rancocas Creek borders the Site to the south.

2.5 Utilities

The Site and vicinity are serviced by public water and sewer.

3.0 SITE INVESTIGATION

3.1 Technical Overview

The Site Investigation was conducted to assess AOCs 1 through 5. Samples were collected by advancing soil borings using a direct-push sampling unit. The direct-push sampler utilized a 1-3/4" outer diameter polyethylene insert to obtain five-foot long continuous soil samples. A photoionization detector (PID) was used to screen the soil for volatile vapors. Subsurface conditions are depicted on the Boring Logs included in **Appendix A**. The boring locations are shown on **Figure 3: Site Investigation Map**.

Sampling was performed in accordance with N.J.A.C. 7:26E and the NJDEP *Field Sampling Procedures Manual* (August 2005) with. A stainless-steel trowel was used to collect soil samples and to transfer the samples to laboratory-supplied glassware. Soil samples collected for volatile organic compounds analysis were collected using disposable EnCore® samplers. Based on field indicators of contamination, groundwater samples were obtained at some of the AOCs using temporary well points. Temporary well points were installed using the Passively Placed Narrow Diameter Point method described in the NJDEP *Alternative Ground Water Sampling Techniques Guide* (April 1994). Temporary well points were purged with a peristaltic pump and groundwater samples were collected using disposable bailers.

A summary of the SI execution and findings are provided in the following sections arranged by AOC. Soil results are shown on **Table 1: Soil Analytical Results**. Groundwater results are shown on **Table 2: Groundwater Analytical Results**. Soil results are compared to the NJDEP Residential Soil Remediation Standards (RSRS), Non-Residential Soil Remediation Standards (NRSRS), and Impact to Groundwater Soil Screening Levels (IGWSSL). Groundwater results are compared to the Groundwater Quality Standards (GWQS).

3.1.1 Reliability of Data

Samples collected by ERI were analyzed by TestAmerica (NJDEP Certification No. 12028) of Edison, New Jersey. Results were documented in a laboratory report that was prepared in accordance with NJDEP reduced laboratory deliverable requirements (N.J.A.C. 7:26E - Appendix A). ERI has reviewed the laboratory report including the non-conformance summary/narrative. Based on review of the laboratory report the laboratory data appears to be reliable as indicated by compliance with sample holding times and precision accuracy criteria for each analytical method and the results of the analyses of blanks, within the limitations noted in the laboratory reports. No significant events or seasonal variations occurred which may have influenced results. A copy of the laboratory report is provided in **Appendix B**.

3.2 AOC-1: Former Oil House

3.2.1 Description of AOC

This AOC was identified on the 1915 Sanborn Map. The oil house was located adjacent to the south end of the main warehouse building.

3.2.2 Soil Sampling

One soil boring, A-2, was advanced at this AOC. The boring was advanced to a depth of 10 feet below the ground surface (ft-bgs). PID readings were not encountered in the boring. Groundwater was encountered at a depth of 4 ft-bgs.

One soil sample, A-2, was collected from native soil at a depth of 2.5-3 ft-bgs and analyzed for non-fractionated extractible petroleum hydrocarbons (EPH).

3.2.3 Findings

EPH was detected in A-2 at a concentration of 86 mg/kg, which does not exceed the NJDEP action limit of 2,300 mg/kg for Category 2 EPH.

The results are not indicative of on-site discharges related to the former oil house.

3.3 AOC-2: Former Powerhouse

3.3.1 Description of AOC

This AOC was identified on the 1927 and 1935 Sanborn Maps. The powerhouse was located to the south of the main warehouse building.

3.3.2 Soil Sampling

One soil boring, A-3, was advanced at this AOC. The boring was advanced to a depth of 15 ftbgs. PID readings were encountered at depths of 5 ft-bgs and 7 ft-bgs through 10 ft-bgs. Odors were detected within a black silty clay layer at a depth of 3-4 ft-bgs. Groundwater was encountered at a depth of 4 ft-bgs.

Four soil samples, A-3A through A-3D, were collected from boring A-3. A-3A was collected at a depth of 2.5-3 ft-bgs from the upper six inches of native soil and analyzed for EPH. Sample A-3B was collected from the black silty clay layer with odors at a depth of 3.5-4 ft-bgs and analyzed for EPH and Target Compound List (TCL) volatile organic compounds plus tentatively identified compounds (VO+TICs). Sample A-3C was collected from the interval with the highest PID reading, at a depth of 7-7.5 ft-bgs, and analyzed for EPH and TCL VO+TICs. Sample A-3D was collected from the interval with the lowest PID reading, at a depth of 9.5-10 ft-bgs, and analyzed for EPH and TCL VO+TICs.

Based on laboratory results, samples A-3B and A-3C were further analyzed for polyaromatic hydrocarbons (PAHs).

3.3.3 Groundwater Sampling

One temporary well point, TW-2, was installed in boring A-3 at a depth of 15 ft-bgs. One groundwater sample was collected and analyzed for TCL VO+TICs and TCL semivolatile organic compounds plus tentatively identified compounds (SVO+TICs).

3.3.4 Findings

EPH was not detected in samples A-3A and A-3D. EPH was detected at concentrations of 190 mg/kg in A-3B and 3,800 mg/kg in A-3C. The EPH detections do not exceed the RSRS for No. 2 heating oil.

Benzo(a)pyrene was detected at a concentration of 0.55 mg/kg in A-3B, which exceeds the NJDEP RSRS and IGWSSL.

TCL VO+TICs and TCL SVO+TICs were not detected in groundwater sample TW-2.

The laboratory results are indicative of a discharge at the former powerhouse location. Further investigation is needed to delineate the extent of the EPH and benzo(a)pyrene contamination in soil at this AOC and to enable evaluation of remedial alternatives.

3.4 AOC-3: Loading Dock

3.4.1 Description of AOC

One loading dock area was identified at the Site. A large bay door was observed directly adjacent to the south end of the warehouse building. This AOC was suspected to contain contaminants above the applicable remediation standards due to potential discharges of wastes during handling operations.

3.4.2 Soil Sampling

One soil boring, A-1, was advanced at this AOC. The boring was advanced to a depth of 15 ftbgs. PID readings were not encountered in the boring. Groundwater was encountered at a depth of 4.5 ft-bgs.

One soil sample, A-1, was collected from native soil at a depth of 4-4.5 ft-bgs and analyzed for EPH, TCL VO+TICs, TCL SVO+TICs, and Target Analyte List (TAL) Metals.

3.4.3 Groundwater Sampling

One temporary well point, TW-1, was installed in boring A-1 at a depth of 15 ft-bgs. One groundwater sample was collected and analyzed for TCL VO+TICs and TCL SVO+TICs.

3.4.4 Findings

EPH, TCL VO+TICs, and TCL SVO+TICs were not detected in the sample. Aluminum and manganese were detected above the NJDEP IGWSSL. However, the IGWSSL for aluminum and manganese are based on secondary GWQS that are not health based. Therefore, the NJDEP has decided that the impact to groundwater pathway does not need to be addressed for these metals unless there is cause to believe that their presence is due to a site discharge.

TCL VO+TICs and TCL SVO+TICs were not detected in groundwater sample TW-1.

The results are not indicative of on-site discharges related to the loading dock.

3.5 AOC-4: Former Dwelling/Office Building

3.5.1 Description of AOC

A former dwelling/office building was identified on the northeastern portion of the Site on the 1909, 1915, 1921, 1927, 1935, and 1945 Sanborn Maps. The dwelling/office building was observed on historic aerial photographs for the years 1931 through 1958. There was a concern that the former dwelling/office may have utilized heating oil tanks.

3.5.2 Geophysical Survey

A geophysical survey was performed by Enviroprobe Services, Inc. (Enviroprobe) at the location of the former dwelling/office building. Ground penetrating radar (GPR) and electromagnetics were used to identify potential USTs or evidence of former UST excavations.

No USTs were identified during the GPR survey. A copy of the Enviroprobe Geophysical Report is included in **Appendix C.**

Since evidence of USTs at this AOC were not identified, soil sampling was not performed. No further action is recommended for this AOC.

3.6 AOC-5: Historic Fill

3.6.1 Description of AOC

In a comparison between the 1909 and 1915 Sanborn Maps, it was apparent that the southern property line had been extended several hundred feet to the south into the Rancocas Creek. There was a concern that contaminated historic fill was utilized at the Site.

3.6.2 Soil Sampling

Two soil borings, A-4 and A-5, were advanced at this AOC. Boring A-4 was advanced within the southwestern portion of the property and boring A-5 was advanced within the southeastern portion. The borings were advanced to a depth of 10 ft-bgs. PID readings were not encountered in the borings. Groundwater was encountered at a depth of 4.5 ft-bgs.

Fill material consisting of brick pieces, glass, gravel and wood chips were observed in the borings at depths of 3-5 ft-bgs and 9-10 ft-bgs. Two soil samples, A-4A and A-4B, were collected from boring A-4 and two soil samples, A-5A and A-5B, were collected from boring A-5. The "A" samples were collected from native soil and the "B" samples were collected from fill material. The "B" samples were analyzed for PAHs and TAL Metals.

3.6.3 Findings

Benzo(a)pyrene was detected at a concentration of 94 mg/kg in sample A-4B, which exceeds NJDEP RSRS and NRSRS. The detection also exceeded IGWSSL; however, IGWSSL are not applicable in fill soil.

Benzo(a)anthracene was detected at a concentration of 110 mg/kg in A-4B, exceeding RSRS and NRSRS. Benzo(b)fluoranthene was detected at a concentration of 120 mg/kg in A-4B, exceeding RSRS and NRSRS. Dibenz(a,h)anthracene was detected at a concentration of 15 mg/kg in A-4B, exceeding RSRS and NRSRS. Indeno[1,2,3-cd]pyrene was detected at a concentration of 58 mg/kg in A-4B, exceeding RSRS and NRSRS. Benzo(k)fluoranthene was detected at a concentration of 48 mg/kg, exceeding RSRS.

Lead was detected at a concentration of 2,290 mg/kg in A-4B, exceeding RSRS and NRSRS.

PAHs and metals were not detected above RSRS and NRSRS in sample A-5B.

The results indicate that contaminated historic fill material is present at the southwestern portion of the Site. Further investigation is needed in order to delineate the extent of the historic fill material and to enable evaluation of remedial alternatives.

4.0 CONCLUSIONS AND RECOMMENDATIONS

AOC-1: Former Oil House

The SI findings are not indicative of adverse discharges at AOC-1. No further actions are recommended for this AOC.

AOC-2: Former Powerhouse

EPH was detected above the NJDEP action limit and benzo(a)pyrene was detected above NJDEP RSRS at the former powerhouse location.

The results are indicative of a discharge at the former powerhouse location. Further investigation is needed to delineate the extent of the EPH and benzo(a)pyrene contamination in soil at this AOC and to enable evaluation of remedial alternatives. ERI recommends completion of a Remedial Investigation at AOC-2.

The property owner should be notified that they have a statutory obligation to report this discharge to the NJDEP.

AOC-3: Loading Dock

The SI findings are not indicative of adverse discharges at AOC-3. No further actions are recommended for this AOC.

AOC-4: Former Dwelling/Office Building

A geophysical investigation completed at this AOC did not identify the presence of USTs and/or former UST excavations. Therefore, no further actions are recommended for this AOC.

AOC-5: Historic Fill

The SI findings indicate that contaminated historic fill is present within the southwestern portion of the Site. ERI recommends completion of a Remedial Investigation at this AOC in order to delineate the extent of the contaminated historic fill and to enable evaluation of remedial alternatives.

5.0 LIMITATIONS

This report has been prepared in accordance with generally accepted standards of environmental assessment practice at the time of the investigation. This investigation was conducted solely for the purpose of evaluating environmental conditions with respect to selected contaminants at the site. Environmental Resolutions, Inc. has reviewed the information provided but makes no guarantees or warranties as to the accuracy or completeness of the information. Environmental Resolutions, Inc. has based findings on analytical results reported by a New Jersey Department of Environmental Protection certified laboratory but makes no guarantees or warranties as to the accuracy of subsurface conditions at the Site for purposes of this investigation were made from a limited number of observation points. Conditions may vary away from the data points available. Additional work, including further subsurface investigation, can reduce the inherent uncertainties associated with this type of investigation.

FIGURES

TABLES

	1				r					T
SampleID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	Δ	4-1	A-3	BB		4-3C	
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-203274	4-1	460-203274-	-4	460-2032	74-5	
Sampling Date	Sept_2017	Sept_2017	Nov_2013	2/18/20)20	2/18/2020		2/18/2	2020	
Sample Depth (ft-bgs)				4-4	4.5	3.5-4		7	7-7.5	
Matrix				S	Soil	Soil			Soil	
Dilution Factor					1		1		1	
Unit	mg/kg	mg/kg	mg/kg	mg/	/kg	mg/k	٢g	m	g/kg	
SOIL BY 8260C										
1,1,1-Trichloroethane	160000	NA	0.3	0.00024	U	0.00036	U	0.00025	U	
1,1,2,2-Tetrachloroethane	1	3	0.007	0.00022	U	0.00033	U	0.00023	U	
1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	NA	0.00031	U	0.00047	U	0.00032	U	
1,1,2-Trichloroethane	2	6	0.02	0.00018	U	0.00028	U	0.00019	U	
1,1-Dichloroethane	8	24	0.2	0.00021	U	0.00032	U	0.00022	U	
1,1-Dichloroethene	11	150	0.008	0.00023	U	0.00035	U	0.00024	U	
1,2,3-Trichlorobenzene	NA	NA	NA	0.00019	U	0.00028	U	0.00019	U	
1,2,4-Trichlorobenzene	73	820	0.7	0.00037	U	0.00055	U	0.00038	U	
1,2-Dibromo-3-Chloropropane	0.08	0.2	0.005	0.00048	U	0.00071	U	0.00049	U	
1,2-Dichlorobenzene	5300	59000	17	0.00015	U	0.00022	U	0.00015	U	
1,2-Dichloroethane	0.9	3	0.005	0.00031	U	0.00046	U	0.00031	U	
1,2-Dichloropropane	2	5	0.005	0.00044	U	0.00066	U	0.00045	U	
1,3-Dichlorobenzene	5300	59000	19	0.00016	U	0.00025	U	0.00017	U	
1,4-Dichlorobenzene	5	13	2	0.00023	U	0.00035	U	0.00024	U	
1,4-Dioxane	NA	NA	NA	0.0095	U	0.014	U	0.0097	U	
2-Butanone (MEK)	3100	44000	0.9	0.0028	U	0.0042	U	0.0061		
2-Hexanone	NA	NA	NA	0.0018	U	0.0027	U	0.0018	U	
4-Methyl-2-pentanone (MIBK)	NA	NA	NA	0.0016 L	J *	0.0024 U	*	0.0016	U *	
Acetone	70000	NA	19	0.0059	U	0.044		0.034		
Benzene	2	5	0.005	0.00027	U	0.00040	U	0.00027	U	
Bromoform	81	280	0.03	0.00044	U	0.00066	U	0.00045	U	
Bromomethane	25	59	0.04	0.00049	U	0.00073	U	0.00050	U	
Carbon disulfide	7800	110000	6	0.00028	U	0.0024		0.00033	J	
Carbon tetrachloride	2	4	0.005	0.00040	U	0.00060	U	0.00041	U	
Chlorobenzene	510	7400	0.6	0.00018	U	0.00027	U	0.00019	U	
Chlorobromomethane	NA	NA	NA	0.00029	U	0.00044	U	0.00030	U	
Chlorodibromomethane	3	8	0.005	0.00020	U	0.00030	U	0.00020	U	
Chloroethane	220	1100	NA	0.00054	U	0.00081	U	0.00055	U	
Chloroform	0.6	2	0.4	0.00033	U	0.00049	U	0.00034	U	
Chloromethane	4	12	NA	0.00045	U	0.00067	U	0.00046	U	
cis-1,2-Dichloroethene	230	560	0.3	0.00016	U	0.00024	U	0.00016	U	
cis-1,3-Dichloropropene	NA	NA	0.005	0.00028	U	0.00042	U	0.00029	U	
Cyclohexane	NA	NA	NA	0.00023	U	0.00034	U	0.00090	J	
Dichlorobromomethane	1	3	0.005	0.00027	U	0.00040	U	0.00027	U	
Dichlorodifluoromethane	490	230000	39	0.00035	U	0.00052	U	0.00036	U	
Ethylbenzene	7800	110000	13	0.00021	U	0.00031	U	0.00021	U	
Ethylene Dibromide	0.008	0.04	0.005	0.00019	U	0.00028	U	0.00019	U	
Isopropylbenzene	NA	NA	NA	0.00013	U	0.00020	U	0.0084		
Methyl acetate	78000	NA	22	0.0045	U	0.0067	U	0.0045	U	
Methyl tert-butyl ether	110	320	0.2	0.00013	U	0.00019	U	0.00013	U	
Methylcyclohexane	NA	NA	NA	0.00052	U	0.00077	U	0.010		
Methylene Chloride	46	230	0.01	0.00053	J	0.0036		0.00049	U	
m-Xylene & p-Xylene	NA	NA	NA	0.00018	U	0.00027	U	0.00018	U	
o-Xylene	NA	NA	NA	0.00020	U	0.00030	U	0.00098	J	
Styrene	90	260	3	0.00029	U	0.00043	U	0.00029	U	
Tetrachloroethene	43	1500	0.005	0.00015	U	0.00022	U	0.00015	U	
Toluene	6300	91000	7	0.00024	U	0.00036	U	0.00025	U	
trans-1,2-Dichloroethene	300	720	0.6	0.00026	U	0.00038	U	0.00026	U	
trans-1,3-Dichloropropene	NA	NA	0.005	0.00028	U	0.00041	U	0.00028	U	
Trichloroethene	3	10	0.01	0.00015	U	0.00022	U	0.00015	U	
Trichlorofluoromethane	23000	340000	34	0.00042	U	0.00063	U	0.00043	U	
Vinyl chloride	0.7	2	0.005	0.00057	U	0.00085	U	0.00058	U	
Xylenes, Total	12000	170000	19	0.00018	U	0.00027	U	0.00098	J	
Total Conc	NA	NA	NA	0.00053		0.05		0.06169		
Total Estimated Conc. (TICs)	NA	NA	NA	0.0*T	T	0.0*T	Τ	4.46		

*T There are no TICs reported for the sample

* : LCS or LCSD is outside acceptance limits.

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

	A-3D	
460-2032	74-6	
2/18/	2020	
9.	5-10	
	Soil	
	1	
m	g/kg	
0.00029	U	
0.00026	U	
0.00037	U	
0.00022	U	
0.00025	U	
0.00028	U	
0.00022	U	
0.00044	U	
0.00056	U	
0.00018	U	
0.00036	U	
0.00052	U	
0.00019	U	
0.00028	U	
0.011	U	
0.0050	J	
0.0021	U	
0.0019	U	
0.029		
0.00032	U	
0.00052	U	
0.00058	U	
0.00033	U	
0.00047	U	
0.00022	0	
0.00034	0	
0.00024	0	
0.00064	0	
0.00039		
0.00053	0	
0.00019		
0.00033		
0.00027		
0.00031		
0.00041	U	
0.00023	U*	
0.00015	U U	
0.0053	U	
0.00015	U	
0.00061	U	
0.00057	U	
0.00021	U	
0.00024	U	
0.00034	U	ľ
0.00018	U	
0.00029	U	
0.00030	U	
0.00033	U	
0.00018	U	[
0.00050	U	[
0.00067	U	[
0.00021	U	[
0.034		[
0.0198		
·		

Table 1Soil Analytical Results- VOC TICs200 Ash StDelanco Township, Burlington County, NJ

Sample ID		A-3C		4-3D
Lab Sample ID	460-2032	74-5	460-2032	74-6
Sampling Date	2/18/2	2020	2/18/2	2020
Sample Depth (ft-bgs)	-	7-7.5	9.	5-10
Matrix		Soil		Soil
Dilution Factor		1		1
Unit	m	g/kg	m	g/kg
SOIL TICS BY 8260C				
2-Octene, 2,6-dimethyl-	0.27	JΝ	NR	
Unknown	0.26	J	NR	
Decane, 4-methyl-	0.21	JΝ	NR	
Unknown	0.20	J	NR	
Unknown	0.25	J	NR	
Unknown	0.19	J	NR	
Cyclohexane, 1-methyl-3-(1-	0.72		ND	
methylethenyl)-, cis-	0.73	JIN	INK	
Unknown	0.23	J	NR	
Unknown	0.46	J	NR	
Naphthalene, decahydro-2-methyl-	0.41	JΝ	NR	
Unknown	0.24	J	NR	
Unknown	0.31	J	NR	
Unknown	0.20	J	NR	
Unknown	0.24	J	NR	
Tridecane, 7-methyl-	0.26	JN	NR	
Benzene, 1-ethenyl-3-ethyl-	NR		0.0088	JN
Indan, 1-methyl-	NR		0.011	JΝ

NR: Not Analyzed

RT mm:ss Retention Time in mm:ss format

J : Indicates an Estimated Value for TICs

N : This flag indicates the presumptive evidence of a compound.

Sample ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP		A-1		A-3B	A-30	
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-2032	74-1	460-2032	74-4	460-203274-5	5
Sampling Date	Sept_2017	Sept_2017	Nov_2013	2/18/2	2020	2/18/2	2020	2/18/2020)
Sample Depth (ft-bgs)				4	1-4.5 Soil		3.5-4 Soil	/-/.5	
Dilution Factor					1		1		1
Unit	mg/kg	mg/kg	mg/kg	m	g/kg	m	g/kg	mg/kg	3
SOIL BY 8270D									
1,1'-Biphenyl	61	240	140	0.0052	U	NR		NR	
1,2,4,5-Tetrachlorobenzene	NA	NA	NA	0.012	U	NR		NR	<u> </u>
2,2'-oxybis[1-chloropropane]	23	67	5	0.0070	U	NR		NR	
2,3,4,6-Tetrachiorophenol	NA 6100	NA 68000	NA 68	0.026	0	NR NB		NR	-
2,4,5-Trichlorophenol	19	74	0.2	0.040	U	NR		NR	
2,4-Dichlorophenol	180	2100	0.2	0.025	U	NR		NR	
2,4-Dimethylphenol	1200	14000	1	0.017	U	NR		NR	
2,4-Dinitrophenol	120	1400	0.3	0.19	U	NR		NR	
2,4-Dinitrotoluene	0.7	3	NA	0.042	U	NR		NR	
2,6-Dinitrotoluene	0.7	3	NA	0.028	U	NR		NR	-
2-Chloronaphthalene	NA 310	NA 2200	NA 0.8	0.018	U 11	NR		NR	-
2-Methylnaphthalene	230	2200	0.8	0.014	U	0.26	J F1	1.8	
2-Methylphenol	310	3400	NA	0.015	U	NR		NR	
2-Nitroaniline	39	23000	NA	0.015	U	NR		NR	
2-Nitrophenol	NA	NA	NA	0.039	U	NR		NR	
3,3'-Dichlorobenzidine	1	4	0.2	0.059	U	NR		NR	-
3-Nitroaniline	NA	NA	NA	0.044	U	NR		NR	
4,0-DINITRO-2-METNYIPHENOI	6	68	0.3	0.063	U 11				-
4-Chloro-3-methylphenol	NA	NA	NA	0.013	U	NR		NR	+
4-Chloroaniline	NA	NA	NA	0.027	U	NR		NR	
4-Chlorophenyl phenyl ether	NA	NA	NA	0.014	U	NR		NR	
4-Methylphenol	31	340	NA	0.024	U	NR		NR	
4-Nitroaniline	NA	NA	NA	0.045	U	NR		NR	
4-Nitrophenol	NA 2400	NA	NA	0.063	U	NR		NR	_
Acenaphthene	3400	37000	110	0.028	0	0.029		0.40	
Acetophenone	2	5	3	0.0040	U	0.31 NR	1 L T	0.0042 C	1
Anthracene	17000	30000	2400	0.012	U	0.12	J F1	0.19	J
Atrazine	210	2400	0.2	0.0098	U	NR		NR	
Benzaldehyde	6100	68000	NA	0.017	U	NR		NR	
Benzo[a]anthracene	5	17	0.8	0.014	U	0.56	F1	0.080	
Benzo[a]pyrene	0.5	2	0.2	0.010	U	0.55	F1	0.064	
Benzo[b]fluoranthene	280000	20000	2	0.010	0	0.86	+1	0.12	
Benzo[k]fluoranthene	45	170	25	0.011	U	0.31	F1	0.044	,
Bis(2-chloroethoxy)methane	NA	NA	NA	0.030	U	NR		NR	
Bis(2-chloroethyl)ether	0.4	2	0.2	0.014	U	NR		NR	
Bis(2-ethylhexyl) phthalate	35	140	1200	0.021	U	NR		NR	
Butyl benzyl phthalate	1200	14000	230	0.018	U	NR		NR	
Caprolactam	31000	340000	12	0.061	U	NR		NR	-
Carbazole	24	96	NA 80	0.015	0		E1	0.15	
Dibenz(a,h)anthracene	430	2	08	0.0000	U	0.086	F1	0.017	,
Dibenzofuran	NA	NA	NA	0.0055	U	NR		NR	
Diethyl phthalate	49000	550000	88	0.0056	U	NR		NR	
Dimethyl phthalate	NA	NA	NA	0.088	U	NR		NR	
Di-n-butyl phthalate	6100	68000	760	0.069	U	NR		NR	
Di-n-octyl phthalate	2400	27000	3300	0.021	U	NR	F 4	NR	
Fluoranthene	2300	24000	1300	0.017	11	1.1	+1	0.16	1
Hexachlorobenzene	0.3	24000	0.2	0.0033	U	0.098 NR	111	0.35 NR	
Hexachlorobutadiene	6	25	0.9	0.0083	U	NR		NR	
Hexachlorocyclopentadiene	45	110	320	0.034	U	NR		NR	
Hexachloroethane	12	48	0.2	0.013	U	NR		NR	
Indeno[1,2,3-cd]pyrene	5	17	7	0.015	U	0.32	F1	0.045	
Isophorone	510	2000	0.2	0.11	U	NR	1.54	NR 0.0000	_
Nitrobenzene	6 6	17	25	0.0067	U	0.22	J⊦1	U.UU69 L	
N-Nitrosodi-n-propylamine	5 0 2	14 0 2	0.2	0.0093	U 11				-
N-Nitrosodiphenylamine	99	390	0.4	0.0074	U	NR		NR	+
Pentachlorophenol	0.9	3	0.3	0.080	U	NR		NR	1
Phenanthrene	NA	30000	NA	0.018	J	1.1	F1	0.93	
Phenol	18000	210000	8	0.014	U	NR		NR	
Pyrene	1700	18000	840	0.017	J	1.3	F1	0.25	1
Total Conc	NA	NA	NA	0.052		8.404		4.824	-
Total Estimated Conc. (TICS)	NA	NA	NA	0.45		NR		NK	

NR: Not Analyzed

Highlighted Concentrations shown in bold type face exceed limits

F1 : MS and/or MSD Recovery is outside acceptance limits. J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

4-5B	460 20227	A-4D	
4-10	460-20327	/4-8	460-2032
2020	2/18/2	2020	2/18/2
1-4.5		1-4.5	4
Soil		Soil	
1		50	
g/kg	m	g/kg	m
	NR		NR
	NR		NR
	NIR		NID
	INK		NK
	NR		NR
U	0.011	J	3.7
-	NR		NR
			NID
	INK		INK
	INR		
	NR		NR
U	0.029	J	9.8
U	0.0041	J	8.9
	NR		NR
J	0.066		41
	NR		NR
	NR		NR
	0.24		110
	0.19		94
	0.23		120
J	0.12		48
	0.083		48
	NR		NR
	NID		NID
			130
J	0.25		120
J	0.038		15
	NR		NK
	NR		NR
	0.45		260
J	0.019	J	19
	NR		NR
	0.13		58
	NR		NR
U	0.0069	J	5.5
	NR		NR
J	0.32		240
	NR		NR
	0.49		240
	2 626		1440 9
	NIR		NR
			1111

Table 1Soil Analytical Results- SVOC TICs200 Ash StDelanco Township, Burlington County, NJ

Sample ID	A-1
Lab Sample ID	460-203274-1
Sampling Date	2/18/2020
Sample Depth (ft-bgs)	4-4.5
Matrix	Soil
Dilution Factor	1
Unit	mg/kg
SOIL TICS BY 8270D	
Aldol condensation product	0.45 J A

RT mm:ss Retention Time in mm:ss format

A : The tentatively identified compound is a suspected aldol-condensation product.

J : Indicates an Estimated Value for TICs

SampleID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP	A-1	A-2	A-3A	A-3B	A-3C	A-3D
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-203274-1	460-203274-2	460-203274-3	460-203274-4	460-203274-5	460-203274-6
Sampling Date	Sept_2017	Sept_2017	Nov_2013	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020
Sample Depth (ft-bgs)				4-4.5	2.5-3	2.5-3	3.5-4	7-7.5	9.5-10
Matrix				Soil	Soil	Soil	Soil	Soil	Soil
Dilution Factor				1	1	1	1	10	1
Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SOIL BY NJDEP EPH									
Total EPH (C9-C40)	NA	NA	NA	2.4 U	86	2.3 U	190	3800	2.4 U

U : Indicates the analyte was analyzed for but not detected.

Table 1Soil Analytical Results- Metals200 Ash StDelanco Township, Burlington County, NJ

Sample ID	NJ_SRS7_26D_Tbl1A	NJ_SRS7_26D_Tbl1B	NJDEP		A-1	Α	-4B	A-5B
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-2032	74-1	460-20327	4-8	460-203274-10
Sampling Date	Sept_2017	Sept_2017	Nov_2013	2/18/2	2020	2/18/2020		2/18/2020
Sample Depth (ft-bgs)				4	-4.5	4-	4.5	4-4.5
Matrix					Soil		Soil	Soil
Unit				m	g/kg	mg	/kg	mg/kg
SOIL BY 6020B(MG/KG)								
Aluminum	78000	NA	6000	9590		4520		8230
Antimony	31	450	6	0.32	U	1.7	J	0.34 U
Arsenic	19	19	19	6.7		17.8		6.6
Barium	16000	59000	2100	50.2		1140		61.2
Beryllium	16	140	0.7	0.60		0.63	J	0.45 J
Cadmium	78	78	2	0.37	U	3.3		0.46 J
Calcium	NA	NA	NA	932		4050		1630
Chromium	NA	NA	NA	19.5		50.6		16.4
Cobalt	1600	590	90	4.9		6.6		5.3
Copper	3100	45000	11000	33.3		215		81.3
Iron	NA	NA	NA	20500		60300		15800
Lead	400	800	90	58.0		2290		111
Magnesium	NA	NA	NA	1980		1400		2100
Manganese	11000	5900	65	185		399		221
Nickel	1600	23000	48	10.6		26.4		10.6
Potassium	NA	NA	NA	898		444		575
Selenium	390	5700	11	0.32	U	2.0	J	0.34 U
Silver	390	5700	1	0.69	U	1.1	U	0.73 U
Sodium	NA	NA	NA	34.7	U	67.0	J	55.3 J
Thallium	NA	NA	3	0.14	U	0.31	J	0.15 U
Vanadium	78	1100	NA	20.4		20.5		16.4
Zinc	23000	110000	930	40.6		1180		249

SOIL BY 7471B(MG/KG)						
Mercury	23	65	0.1	0.054	0.59	0.089

Highlighted Concentrations shown in bold type face exceed limits

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

Sample ID	NIAC 7·ዓር	TW-1		TW-2		
Lab Sample ID	GW QualStds	460-20327	460-203274-12		4-13	
Sampling Date	ClassII A	2/18/2	2020	2/18/2020		
Matrix	Higher Values	, , , , W	/ater	Wa		
Dilution Factor	2019		1		1	
Unit	ug/l		ug/l		ug/l	
WATER BY 8260C	~ 8/ ·					
1.1.1-Trichloroethane	30	0.24	U	0.24	U	
1 1 2 2-Tetrachloroethane	1	0.27	U	0.27	U	
1.1.2-Trichloro-1.2.2-trifluoroethane	20000	0.31	U	0.31	U	
1.1.2-Trichloroethane	3	0.43	U	0.43	U	
1.1-Dichloroethane	50	0.26	U	0.26	U	
1.1-Dichloroethene	1	0.26	U	0.26	U	
1.2.3-Trichlorobenzene	NA	0.36	U	0.36	U	
1.2.4-Trichlorobenzene	9	0.37	U	0.37	U	
1.2-Dibromo-3-Chloropropane	0.02	0.38	U	0.38	U	
1.2-Dichlorobenzene	600	0.43	U	0.43	U	
1.2-Dichloroethane	2	0.43	U	0.43	U	
1.2-Dichloropropane	1	0.35	U	0.35	U	
1,3-Dichlorobenzene	600	0.34	U	0.34	U	
1,4-Dichlorobenzene	75	0.33	U	0.33	U	
1,4-Dioxane	0.4	28	U	28	U	
2-Butanone (MEK)	300	1 9	IJ	1 9	U	
2-Hexanone	40	1.1	U	1.1	U U	
4-Methyl-2-pentanone (MIBK)	NA	1.3	U	1.3	U	
Acetone	6000	4.4	U	4.4	U	
Benzene	1	0.20	U	0.20	U	
Bromoform	4	0.54	U	0.54	U	
Bromomethane	10	0.55	U	0.55	U	
Carbon disulfide	700	0.82	U	0.82	U	
Carbon tetrachloride	1	0.21	U	0.21	U	
Chlorobenzene	50	0.38	U	0.38	U	
Chlorobromomethane	NA	0.41	U	0.41	U	
Chlorodibromomethane	1	0.28	U	0.28	U	
Chloroethane	5	0.32	U	0.32	U	
Chloroform	70	0.33	U	0.33	U	
Chloromethane	NA	0.40	U	0.40	U	
cis-1,2-Dichloroethene	70	0.22	U	0.22	U	
cis-1,3-Dichloropropene	NA	0.22	U	0.22	U	
Cyclohexane	NA	0.32	U	0.32	U	
Dichlorobromomethane	1	0.34	U	0.34	U	
Dichlorodifluoromethane	1000	0.31	U	0.31	U	
Ethylbenzene	700	0.30	U	0.30	U	
Ethylene Dibromide	0.03	0.50	U	0.50	U	
Isopropylbenzene	700	0.34	U	0.46	J	
Methyl acetate	7000	0.79	U	0.79	U	
Methyl tert-butyl ether	70	0.47	U	0.47	U	
Methylcyclohexane	NA	0.26	U	0.26	U	
Methylene Chloride	3	0.32	U	0.32	U	
m-Xylene & p-Xylene	NA	0.30	U	0.30	U	
o-Xylene	NA	0.36	U	0.36	U	
Styrene	100	0.42	U	0.42	U	
tert-Butyl alcohol (TBA)	100	8.3	U	8.3	U	
Tetrachloroethene	1	0.25	U	0.25	U	
Toluene	600	0.38	U	0.38	U	
trans-1,2-Dichloroethene	100	0.24	U	0.24	U	
trans-1,3-Dichloropropene	NA	0.49	U	0.49	U	
Trichloroethene	1	0.31	U	0.31	U	
Trichlorofluoromethane	2000	0.32	U	0.32	U	
Vinyl chloride	1	0.17	U	0.17	U	
Xylenes, Total	1000	0.65	U	0.65	U	
Total Conc	NA	0.0		0.46		
Total Estimated Conc. (TICs)	NA	0.0*T		177.0		

*T There are no TICs reported for the sample

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

Table 2Groundwater Analytical Results- VOC TICs200 Ash StreetDelanco Township, Burlington County, NJ

Sample ID	Т	'W-2			
Lab Sample ID	460-20327	460-203274-13			
Sampling Date	2/18/2	2020			
Matrix	W	/ater			
Dilution Factor		1			
Unit		ug/l			
WATER TICS BY 8260C					
Indane	7.1	JN			
Benzene, 1-methyl-2-(1-methylethyl)-	15	JN			
Indan, 1-methyl-	18	JΝ			
Benzene, 1,2,4,5-tetramethyl-	9.0	JN			
Benzene, 1-methyl-2-(1-methyl-2-	61				
propenyl)-	0.1	JIN			
1H-Indene, 2,3-dihydro-5-methyl-	5.4	JN			
Benzene, 2-ethenyl-1,4-dimethyl-	55	JN			
1H-Indene, 2,3-dihydro-1,3-dimethyl-	11	JΝ			
Benzene, (2-methyl-1-butenyl)-	6.3	JN			
1H-Indene, 2,3-dihydro-1,6-dimethyl-	19	JN			
2-Ethyl-2,3-dihydro-1H-indene	10	JN			
1H-Indene, 2,3-dihydro-4,7-dimethyl-	5.3	JΝ			
1H-Indene. 2.3-dihvdro-1.2-dimethvl-	9.8	JΝ			

RT mm:ss Retention Time in mm:ss format

J : Indicates an Estimated Value for TICs

N : This flag indicates the presumptive evidence of a compound.

Table 2Groundwater Analytical Results- SVO SIMs200 Ash StreetDelanco Township, Burlington County, NJ

Sample ID	NJAC 7:9C	Т	W-1	TW-2	
Lab Sample ID	GW QualStds	460-20327	4-12	460-203274-13	
Sampling Date	ClassII A	2/18/2	2020	2/18/2020	
Matrix	Higher Values	W	/ater	Water	
Dilution Factor	2019	1		1	
Unit	ug/l	ug/l		ug/l	
WATER BY 8270D SIM					
Benzo[a]anthracene	0.1	0.055		0.019	J
Benzo[a]pyrene	0.1	0.024	J	0.022	U
Benzo[b]fluoranthene	0.2	0.057		0.024	U
Bis(2-chloroethyl)ether	7	0.026	U	0.026	U
Hexachlorobenzene	0.02	0.013	U	0.013	U
N-Nitrosodimethylamine	0.8	0.12	U	0.12	U
Pentachlorophenol	0.3	0.15	U *	0.15	U *
Total Conc	NA	0.136		0.019	

* : LCS or LCSD is outside acceptance limits.

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

Sample ID	NJAC 7:9C	TW-1		TW-2	
Lab Sample ID	GW QualStds	460-20327	4-12	460-20327	4-13
Sampling Date	ClassII A	2/18/2	2020	2/18/2	2020
Matrix	Higher Values	W	/ater	W	/ater
Dilution Factor	2019		1		1
Unit	ug/l		ug/l		ug/l
WATER BY 8270D					
1,1'-Biphenyl	400	1.2	U	1.2	U
1,2,4,5-Tetrachlorobenzene	NA	1.2	U	1.2	U
2,2'-oxybis[1-chloropropane]	300	0.63	U	0.63	U
2,3,4,6-Tetrachlorophenol	200	0.75	U	0.75	U
2,4,5-Trichlorophenol	700	0.88	U	0.88	U
2,4,6-Trichlorophenol	20	0.86	U	0.86	U
2,4-Dichlorophenol	20	1.1	U	1.1	U
2,4-Dimethylphenol	100	0.62	U	0.62	U
2,4-Dinitrophenol	40	14	U	14	U
2,4-Dinitrotoluene	NA	1.0	U	1.0	U
2,6-Dinitrotoluene	NA	0.83	0	0.83	U
2-Chloronaphthalene	600	1.2	0	1.2	U
2-Chiorophenol	40	0.38	0	0.38	0
2-Methylnaphthalene	30	1.1	0	1.1	0
2-Methylphenol	50	0.67	0	0.67	0
2-Nitrophenol	NA NA	0.47	U 	0.47	U 11
2-Nitrophenoi	NA 20	0.75	0	0.75	0
3,3 -Dichlorobenziaine	30	1.4	0	1.4	0
4.6-Dinitro-2-methylphenol	NA 0.7	1.5		1.5	
4,0-Dillitio-2-methyphenol	0.7	0.75		0.75	
4-Chloro-3-methylphenol	100	0.73		0.73	
4-Chloroaniline	30	1 9	 	1 9	<u> </u>
4-Chlorophenyl phenyl ether	50 NA	1.5		1.5	U U
4-Methylphenol	50	0.65	<u> </u>	0.65	U
4-Nitroaniline	NA	1.2	<u> </u>	1 2	U
4-Nitrophenol	NA	4.0	U U	4.0	U
Acenaphthene	400	1.1	U	1.1	U
Acenaphthylene	100	0.82	U	0.82	U
Acetophenone	700	2.3	U	2.3	U
Anthracene	2000	0.63	U	0.63	U
Atrazine	3	1.3	U *	1.3	U *
Benzaldehyde	NA	2.1	U	2.1	U
Benzo[g,h,i]perylene	100	1.4	U	1.4	U
Benzo[k]fluoranthene	0.5	0.67	U	0.67	U
Bis(2-chloroethoxy)methane	NA	0.59	U	0.59	U
Bis(2-ethylhexyl) phthalate	3	1.7	U	1.7	U
Butyl benzyl phthalate	100	0.85	U	0.85	U
Caprolactam	4000	0.68	U *	0.68	U *
Carbazole	NA	0.68	U	0.68	U
Chrysene	5	0.91	U	0.91	U
Dibenz(a,h)anthracene	0.3	0.72	U	0.72	U
Dibenzofuran	NA	1.1	U	1.1	U
Diethyl phthalate	6000	0.98	U	1.3	J
Dimethyl phthalate	100	0.77	U	0.77	U
Di-n-butyl phthalate	700	0.84	U	0.84	U
Di-n-octyl phthalate	100	4.8	U	4.8	U
Fluoranthene	300	0.84	U	0.84	U
Fluorene	300	0.91	0	0.91	U
Hexachlorobutadiene	1	0.78	0	0.78	U
Hexachlorocyclopentadiene	40	3.6	0	3.6	U
	7	0.80	U	0.80	U
Indeno[1,2,3-C0]pyrene	0.2	0.94	U	0.94	U
Isophorone	40	0.80	0	0.80	0
Nitrobonzono	300	1.1	U	1.1	U
N-Nitrosodi-n propulamina	0	0.57	0	0.57	0
	10	0.43	U	0.43	U 11
Phenanthrone	100	0.89	1	0.89	
Phenol	2000	0.38	11	0.00	11
Pyrene	2000	1.6	11	0.29	
Total Conc	200 NA	1.0	0	2 16	0
		0.0		2.10	

* : LCS or LCSD is outside acceptance limits.

* : RPD of the LCS and LCSD exceeds the control limits

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

APPENDIX A

SOIL BORING LOGS

Environmo East Gat	ental Reso e Drive, Su	lutions, Ind vite 103	c. 815 Mount	Soil Boring Log	ID A-1	Project Number a 200 AS	nd Location			
	Laurel, N	NJ 08054		Logger: MPT	Driller:	Enviroprobe	2/18/2020			
Depth to Groundwater:		Groundwater: 4.5		Drilling Method:	Geoprobe/	′truck	Time:			
Depth	SAN	IPLE	PID		DESCRIPT	ION	REMARKS			
(feet)	NO.	DEPTH	(ppmv)							
1										
					No Recov	ery				
2					Doring A 1 -					
3					BOING A-1 = $\Delta O C_{-3}$. Loading					
J										
4			0	dark brown silty clay						
	A-1	4-4.5	0	hrown clavey-silt						
5			0							
6										
7					No Recovery					
/										
8										
			0		dark brown					
9			0		uark brown	i Cidy				
			0	lig	ht brown cla	avev silt				
10			0	0		- -				
11			0		No Recov	ery	4			
11			0							
12			0				Temp well TW-1			
			0				installed			
13			0		brown silty	, clay				
			0							
14			0							
			0							
15			0							

end of boring

Environmental Resolutions, Inc. 815 East Gate Drive, Suite 103			Soil Boring Log	Boring Log ID Project Number an A-2 200 ASH		nd Location H	
Μ	ount Laur	el, NJ 0805	4	Logger: MPT Driller: Enviroprobe		Enviroprobe	2/18/2020
Depth to Gr	epth to Groundwater: 4'		Drilling Method: Geoprobe/truck		Drilling Method: Geoprobe/truck		Time:
Depth	SAN	IPLE	PID				DEMARKS
(feet)	NO.	DEPTH	(ppmv)	DESCRIPTION			REIVIARNO
1					No Recover	ſŶ	
							Boring A-2 =
2			0	dark	brown clay	ey silt	AOC-1: Oil
			0	light bro	wn gravelly	silty sand	House
3	A-2	2.5-3	0				
			0	dark brown clayey silt			
4			0				
			0	brown clay			
5			0				
6				No Recovery			
			0	brown clay			
7			0				4
			0				
8			0	da	rk gray clae	y silt	
			0				
9			0				-
10			0		gray clay		
			-		end of borir	ng	1
11						.0	
12							
13							
14							
15							

Enviro 815 E	onmental ast Gate I	Resolution Drive, Suite	s, Inc. e 103	Soil Boring Log	Dg ID Project Number and A-3 200 ASH		and Location		
М	ount Laur	<u>el, NJ 0805</u>	4	Logger: MPT	Driller:	Envirprobe	2/18/2020		
Depth to Gro	pth to Groundwater: 4'			Drilling Method:	Geoprobe/truck		ethod: Geoprobe/truck		Time:
Depth	SAN	IPLE	PID	г Г		N	DEMARKS		
(feet)	NO.	DEPTH	(ppmv)	DESCRIPTION			REWARKS		
				No Recovery					
1									
						Boring A-3 =			
2							AOC-2: Former		
			0	dark	brown claye	ey silt	Powerhouse		
3	A-3A	2.5-3	0	orange	e brown cla	yey silt			
			0	black silty clay; fine gravel; ODOR					
4	A-3B	3.5-4	0						
			0	gray silty clay					
5			4.4						
				No Recovery					
6									
-						-			
/	1.20	775	22.5						
0	A-3C	/-/.5	32.5	4					
0			20.5	•					
٥			20.4						
9			2.6						
10	A-3D	9 5-10	1.8						
10		5.5 10	0	1					
11			0	C	lark gray cla	iy			
			0	1					
12			0	1			Temp well TW-2		
			0	1			installed		
13			0						
			0						
14			0						
			0		o brown ala	vov cilt	1		
15			0	orange brown clayey silt					
					end of borin	g			

Enviro 815 E	onmental I ast Gate I	Resolution Drive, Suite	s, Inc. e 103	Soil Boring Log		Project Number and Location 200 ASH			
М	1ount Laurel, NJ 08054			Logger: MPT Driller: Enviroprobe			2/18/2020		
Depth to Gro	oundwater:	4	.5	Drilling Method: Geoprobe/truck		Drilling Method: Geoprobe/truck		′truck	Time:
Depth (feet)	SAM NO.	I PLE DEPTH	PID (ppmv)	DESCRIPTION			REMARKS		
1									
2					No Recovery				
3			0	brown silty cla	ay; some m	edium gravel			
4			0	dark brown silty cla	dark brown silty clay; glass pieces, brick, gravel,				
			0	wood chips (Fill material)					
5			0	very gra	velly gray si	ilty clay			
6					moved 1' closer to building for add'l boring;				
8					Refusal at 5'2", large brick pieces at bottom of sleeve				
9 10						gravel and clay layer beneath O PID			
11				ei	nd of borinរ្	5			
12				1					
13									
14									
15									

Enviro 815 E	Environmental Resolutions, Inc. 815 East Gate Drive, Suite 103			Soil Boring Log	ID A-5	Project Num 20	ber and Location 0 ASH					
М	ount Laur	el, NJ 0805	54	Logger: MPT Driller: Enviroprobe			2/18/2020					
Depth to Gro	Depth to Groundwater: 4.5'		Drilling Method: Geoprobe/truck		Drilling Method: Geoprobe/truck		Time:					
Depth (feet)	SAM NO.	I PLE DEPTH	PID (ppmv)	DESCRIPTION			REMARKS					
1												
2				No Recovery Boring A AOC-5 H				No Recovery Boring A AOC-5 H		No Recovery		
3			0				-					
4			0	mixed light and dark brown silty clay fine to coarse gravel, brick pieces (Fill)								
5			0	brown clay,	brick piece:	s mixed in						
6 7 8				N	o Recovery							
9			0 0 0	brown clay,	brick piece	s mixed in						
11				er	d of boring		-					
12												
13												
14												
15												

APPENDIX B

LABORATORY REPORT

APPENDIX C

ENVIROPROBE GEOPHYSICAL REPORT

GEOPHYSICAL INVESTIGATION REPORT

PERFORMED AT:

200 Ash Street Delanco, NJ 08075

PREPARED FOR:

Meredith Tulio Environmental Resolutions, Inc. 815 East Gate Drive, Suite 103 Mount Laurel, NJ 08054

PREPARED BY:

John Wallace Geophysical Technician Enviroprobe Service, Inc. 81 Marter Avenue Mount Laurel, NJ 08054 Phone: (856) 858-8584 Toll Free: (800) 596-7472

February 18, 2020

1.0 INTRODUCTION

Enviroprobe Service, Inc. (Enviroprobe) is an environmental investigation services firm which provides monitoring well installation (HSA), Geoprobe (DPT) drilling services and Environmental & Engineering Geophysics (EEG) services to the environmental consulting and engineering community.

Enviroprobe conducted a subsurface geophysical investigation at the subject property within client-specified areas of concern. Due to conditions and objectives, the investigation utilized a GSSI UtilityScan cart-mounted ground penetrating radar (GPR) unit with a 350 MHz antenna and a Fisher TW-6 metallic locator.

Ground penetrating radar (commonly called GPR) is a geophysical method that has been developed over the past thirty years for shallow, high-resolution, subsurface investigations of the earth. GPR uses high frequency pulsed electromagnetic waves (generally 10 MHz to 2,000 MHz) to acquire subsurface information. An EM wave is propagated downward into the ground by a transmitting antenna. Where abrupt changes in electrical properties occur in the subsurface, a portion of the energy is reflected back to the surface. This reflected wave is detected by a receiver antenna and transmitted to a control unit for real time processing and display. The penetration depth of the GPR unit varies from several inches to tens of feet according to site-specific conditions. The penetration depth decreases with increased soil conductivity. The penetration depth is the greatest in ice, dry sands, and fine gravels. Clayey, highly saline or saturated soils, areas covered by concrete, foundry slag, or other highly conductive materials greatly reduce GPR penetration. GPR is a method that is commonly used for environmental, engineering, archaeological, and other shallow investigations.

The Fisher TW-6 metallic locator is designed to find pipes, cables and other metallic objects such as underground storage tanks (USTs). The TW-6 transmitter generates an electromagnetic field that induces electrical currents in the subsurface. These currents produce a secondary electromagnetic field that is measured by the TW-6 receiver. One surveyor can carry both the transmitter and receiver together to search for underground metallic objects, although the TW-6 response can also be affected by the electrical properties of non-metallic materials in the subsurface.

2.0 SCOPE OF WORK

On February 18, 2020, a geophysical technician from Enviroprobe Service Inc. was mobilized to the subject property to perform a geophysical investigation. The purpose of the investigation was to detect possible USTs and/or piping associated with a UST in the client selected exterior portions of the subject property. The ground surface of the survey area consisted of natural soil surfaces.

3.0 SURVEY RESULTS

The utility survey was conducted using a cart-mounted GPR unit and a TW-6 metallic locator.

The GPR and TW-6 were used in a grid pattern over all client specified areas of the site. Based on the results of the GPR and TW-6 surveys, no metallic anomalies which typically consist with a UST, vent piping, or product piping were detected on site.

4.0 LIMITATIONS

On-site limitations included fencing, trees, and room to maneuver the GPR.

Due to surface conditions and subsurface content, the GPR penetration depth was estimated at about 4 feet in the majority of the survey area.

Due to the dielectric properties of the subsurface, plastic polymer and fiberglass utilities may not have been detected.

The underground utility survey was conducted in compliance with the industry standard of care guidelines found in ASCE 38-02 (Level B).

5.0 WARRANTIES

The field observations and measurements reported herein are considered sufficient in detail and scope for this project. Enviroprobe Service, Inc. warrants that the findings and conclusions contained herein have been promulgated in accordance with generally accepted environmental engineering methods. There is a possibility that conditions may exist which could not be identified within the scope of this project and were not apparent during the site activities performed for this project.

Enviroprobe represents that the services were performed in a manner consistent with that level of care and skill ordinarily exercised by environmental consultants under similar circumstances. No other representations to Client, express or implied, and no warranty or guarantee is included or intended in this agreement, or in any report, document, or otherwise.

Enviroprobe Service, Inc. believes that the information provided in this report is reliable. However, Enviroprobe cannot warrant or guarantee that the information provided by others is complete or accurate. No other warranties or guarantees are implied or expressed.

GPR data is subject to signal anomalies and operator interpretation. The GPR data is intended to provide the locations of areas of concern requiring additional investigation or the approximate location of underground structures and utilities. Great care must be utilized when excavating and/or drilling around underground structures and utilities since GPR data can only be used for estimation purposes and GPR data is subject to misinterpretation. Enviroprobe can not guarantee that utilities, post-tension cables, and/or rebar will not be incurred during drilling, cutting, coring, or excavating activities.

This report was prepared pursuant to the contract Enviroprobe has with the Client. That contractual relationship included an exchange of information about the property that was unique and between Enviroprobe and its client and serves as the basis upon which this report was prepared. Because of the importance of the communication between Enviroprobe and its client, reliance or any use of this report by anyone other than the Client, for whom it was prepared, is prohibited and therefore not foreseeable to Enviroprobe.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to Enviroprobe contract with the Client. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.

LAST PAGE OF DOCUMENT